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The Numerical Evaluation of a
Physical Optics Normalized Cross
Section for a Rough Surface

1. INTRODUCTION

This report is devoted to two main topics: The detailed explanation of the numerical evaluation of
the physical optics normalized cross section of a rough surface (6°) and the comparison of these
numerical results with two other approximate evaluations of the physical optics integral
representation for 6°. In a previous paper!, the general integral expression for the normalized cross
section ¢° was given for a surface which is randomly rough in one dimension only and some
preliminary comparisons of the three representations for ¢° were made as a function of surface
roughness and mean surface slope. In this report, we analyze this general integral expression for ¢°
and show how it may be evaluated numerically. Additional comparisons are included.

The basic condition for a physical optics (PO) model to be valid is that R,_ >> A where R_ is the
average radius of curvature of the surface and A is the em wavelength. In previous work2, we showed
that the condition T >> A (T is the surface correlation length) is a sufficient condition for R, >> X if the
surface slopes are small, but it becomes necessary as well as suflicient if larger slopes are not excluded.
That demonstration assumed Gaussian heights and correlation. In this paper, we will be concerned

(Received for publication 16 February 1988)

1. Papa, RJ. and Lennon, J.F. (1988) Reglons of Validity for Some Rough Surface Scattering
Models, "Scattering and Propagation in Random Media", AGARD Conference Proceedings,
419.

2. Papa, PJ., Lennon, J.F., and Taylor, RL. (1984) An Analysis of Physical Optics Models for
Rough Surface Scattering, RADC-TR-84-195, ADA154960.




mainly with small slope conditions. Under the assumption R, >> A, Barrick and Peake3 have given a
general expression for a PO ¢° with no shadowing. This expression generally4-7 has been evaluated by
taking the high {requency limit, k = 2n/A = « (GO) which allows decorrelation of the ensemble
averaging over the height distribution from that of the surface slope distribution followed by an
asymptotic algebraic result. It has been shown! that their product form representation:

00 = I qu |2J (1)

is valid without the restriction A — U, so long as the surface slopes are small {6/T < 1) and J is kept as
an integral form. Here, B, is the scattering matrix element (8), p refers to the polarization of the
incident wave and q refers to the polarization of the scattered wave (horizontal or vertical), J is
proportional to the probability density function of the surface slopes and o is the standard deviation
in surface height. Gaussian heights and correlation are again assumed. This result and the high
frequency form are then compared with numerical evaluation of the general expression for ¢° for
forward scattering and horizontal polarization.

The conventional expression for the normalized cross section ¢° may be defined by applying
physical optics principles to rough surface scattering, where the Kirchhoff integral is used to represent
the scatlered em wave and the boundary conditions on the surface are satisfied by employing the
Fresnel plane wave reflection coeflicients!-8. Multiple scattering is not included. Following these
procedures the Barrick and Peake3 generalized expression for the field scattered from a rough surface
is (horizontal polarization):

P2 L2
Einc - —ikle'kR0/4nRolEh J IF(éx- §y)[e‘klk"k5|' r1dxdy (2)
-L/2 -L/2

where

EL = incident, horizotally polarized electric field,

R, = distance from origin to observation point,

3. Barrick, D.E. and Peake, W.H. (1967) Scattering from Surfaces with Different Roughness Scales:
Analysis and Interpretation, Battelle Report, AD662751.

4. Semyonov, B.I. {1966) Approximate computation of scattering of electromagnetic waves by
rough surface contours, Radiotekhnika { Electrontka 11, 1179-1187.

5. Barrick, D.E. (1968) Rough surface scattering based on the specular point theory, IEEE Trans.
Antennas Propag. AP-16(4), 449-454.

6. Kodis, R. (1966) A note on the theory of scattering from an trregular surface, IEEE Trans.
Antennas Propag. AP-14(1), 77-82.

7. Sancer, M.I. (1969) Shadow corrected electromagnetic scattering from a randomly rough surface,
IEEE Trans. Antennas Propag. AP-17(5), 575-585.

8. Ruck, G.T., Barrick, D.E., Stuart, W.D., and Krichbaum, C.K. (1970) Radar Cross Section
Handbook, Vol. 2, New York. Plenum Press.




r =Xxx +yy + E(x,y)z = distance from origin to point on rough surface,
k;. k= unit constant vectors pointing in direction of incidence and scattering.
&x- &y = local surface slopes in x and y dir=ctions at surface point

E(x,y), that is, 9§ /9x and 3¢ /oy,

The factor F( &, . gy) is a function of the local normal to the surface and of local Fresnel reflection
coefliclents at each surface point. The Barrick and Peake expression for F is incorrect as printed. The
correct form is given by Sancer’.

To form the normalized cross section of the rough surface, ¢°, it is necessary to calculate

o0° ot <Es* . ES> - <Es>2 (3)

where < - > denotes an ensemble average over the random variables &.&; &.&, &,). and §). Here & is
the random hight at point (x, y) and &, is the random height at point (x,. y,;). The general PO expression
IEq. (3)] for o° involves a ten-fold integration over the variables x. y, x,.y). & &, &,. &y &xi. and &y By
making use of the stationarity of the random process, this expression can be reduced to an eight-fold
integral. By what is traditionally referred to as a geometrical optics assumption, this result is further
reduced to a single integral form and finally evaluated as an algebraic expression., The single integral
form can also be obtained by making use of a small slope condition!. For that case, though, the final
evaluation does not apply.

2. THEORY FOR SCATTERING FROM A ONE-DIMENSIONAL ROUGH SURFACE

To simplify the general expression for 6° and to make numerical evaluations of ¢° inore eflicient,
it will be assumed that the random distribution in heights, £, have only a one-dimensiona! variation
& = &{x). It will also be assumed that the scattering takes place in the direct forward direction, so that
there 18 no azimuthai vanativn (wg - 0°) and thai Lhere is o shadowing  The most general expression
for o° for a one-dimensional rough surface involves a six-fold integral. where the variables of
integration are x;_ x,. &,, &,. u;, and p,. Here, x; and x, , are two points on the rough surface, §, and &, are
the random surface heights at the two points and y, and w, are the random surface slopes at the two
pointe, By using the fact that the surface heights are to be regarded as a stationary random process, so
that the correlation function of the suriace helghts, ¢/, is a function only of the separation between
points t = x; - x5 , the six-fold integral for 0° may be reduced to a five-fold integral. Then. using the tact
that the general expression for ¢° is a function only of the height differences § = £, ~ &,. the five-foid
integral can be reduced to a four-fold integral. Finally, by assuming the trivanate distribution
function for the heights § and slopes y1, and u, Is a Gaussian function, the integration over § can be
performed analytically. Then, the remaining expression for o° reduces to a triple integral, which can
be performed numerically using Gaussian quadrature techniques.




Following the development given by Hagfors®, the expression for 6° may be written as (1):

c° = 2nk 0Jdt cosv, T wit) (4)

where

v, = k(sin®; - sind,)

T = X, - X, (separation between two points on the rough surface}

and
wlt) = G(1) - H. (5)
G(t) =2 [dupFluy) [duFliy) [dg cosva & - Pyl kg &0 1)
-0 -0 0

P53 = trivariate distribution function in height dillerences and surface slopes. In addition, §,. u,.
and &, p, are the heights and slopes of point 1 and point 2 , respeciiveily , with§ =&, - &,. p; =§,; and
He=ba

F(u) is a complicated function of the slopes |, and is given in the appendix, as is the (orm [or the
quantity H. It can be shown that w{t) = 0 as 1 — .

There are no restrictions on the expression for ¢° given by [Eq. (4)], other than the validily of
physical optics. T >> A. There are singularities In the integrand of {Eq. (4)] bul they can be shown (o be
integrable and the expression has been evaluated numerically. using quadrature formulas to provide a
standard for the two limiting case solutions. For the two sets of assumptions considered here, the
expressions in (Eq. (4)] and {Eq. (5)] reduced to the simpler form of [Eq. {6)] involving a single
integration over 1.

oo

6° = 2nk F2uy) fdr cosv,t - [xz - x 1) '6)
o

where
Xz = expi-czviu - pi
p=expl-t2/T?3

2
x| = exp(-v, o 2/2)

9. Hagfors, T. (1964) Backscatlering from an undulating surface with applications to radar returns
from the moon, J. Geophysical Res. 69(18). 3779-3784.




and

v, = -k{cos8; + e ).

The details of the arguments in each case are presented in the appendix. Finally, for the case where
A —Oand X > 1. the integral of {Eq. (6})] can be explicitly evaluated for o° using the stationary phase
methrd”:

6° = nkF2(u ) (TVn/Elexp(-vT2/4%2) (7)

Here, L = -ov,

One of our objectives here is to examine the conditions under which each of these two forms agrees
with a direct numerical evaluation of {Eq. (4)] and [Eq. (5])] and to define the regions where one or the
other limiting case solutions would be preferred. These are discussed in Section 5.

3. SIMPLIFICATION OF EXPRESSION FOR NORMALIZED CROSS SECTION

{Eqs. (1) and (5)] constitute exact physical optics expressions for the normalized cross section o7 of
a one dimensional rough surface  These equations show that this general expression for 6° involves a
four-fold integration over the variables 1. &, @) and y,. If the trivariate distribution function P3(g, u,.
Ho) in &, uy and p, is assumed 1o be a Gaussian, then the integration over § may be accomplished

analytically, as shown in the appendix. [Eq. AB), that is,

. 1 v, 2
1= J'd'cosv. I.py=————¢€¢ cosv, Be V2%/4A (8)
o ] A 3 (271:\]’M“) z
where
A = M /{2IR])
B =M;p/M ), + 1y

2 2 2 2
c=(1/2IR}) ((Mgy ~ Mg /My )Y + H2) + 2(M g3 =~ M712/Myy ) u,l
Mij is the co-factor of the covariance matrix R " One may rewrite the quanUty ¢ as

¢ = (62/T3(1 /M EMT + pd) + 2Fp pyl

where

E = (1/(62/T2) ((M;;M,, - M%) /(2IR1}))

and

A



F = (1/(62/T2) ((M;;Mg3 - M3 }/(21R1))

After considerable algebraic manipulation, one can show that E = 1 and

F = —exp(-12/T2)(1 - 21%/T9)

1-F2=M,;/(40¥/TH

By completing the square, one may rewrite ¢ as

c = (62/T2(1/M,) [(u? +us+ 2Fp s Fud) - F2ul ] (9)
Now, define 1 = hy + Fiu). so that ¢ becomes

[ a2 wp H1 ] (10)
c= (T_z)(M“ b+ 4(0’5/'1‘!)
The question arises, what happens to the expression for I given by [Eq. (8)]as t— O (x; — x,). It
404 —
can be shown that M;; — (%’—)(ﬂ/ﬂ) and IRl {5 (8%-) (t8/T8). Also, ast—~0,
¢ —0.F—-land pu; =y, sothat u, —= 0. Then we have
¢ [T le, +ui/ala2/4(a2/T ),
where ¢, is a constant.
So that if
Hp=0.¢c =% ¢

and
I .o (1/(2r it )e <

Hence, I and therefore w(t) has a singularity at T = 0. However, it can be shown that this singularity is
integrable. This may be seen from [Eq. (5)]. Here, the behavior of W(t) near t = Q is governed by Glz).
which in turn. is governed by the behavior of P; near t = 0. But, from [Eq. (A3})] in the appendix,

P,=(2r)-3/2 |RI-1/2¢-9
where

Q=uT Rlu.

Now,

IRl (= (Bo8/T4)(18/T8)

and




Q "o 1/(cgt®) gt 2 + ¢tk (1) + ug).

where ¢y 3, and ¢4 are constants.
Therefore, sinceE ~O0and p) ~ 1, Q ;5 + =
so that

P3:=%0

and W(1) is fininte as t — 0. Thus, W(1) is integrable about the point T = 0. How this may be
accomplished numerically is explained in Section 4.

4. NUMERICAL EVALUATION OF NORMALIZED CROSS SECTICN

This section discusses the numerical evaluation cf the simplified expression for the normalized
cross section. We adaress round off errors, integration schemes and limits of integration. Nurmerical
integration of large complicated functions is always challenging, but especially in our case. Using
My= py+ Fu,. we have the cross section

=]

c° = 21:de1 cos(v,t) W(z)

where

W(t) = G(t}) - H

and

oo ]

=, . = -v2/4a
Gl1) = J’dul IduQ[F(uz- Fu)F(u) - e cos(v,B) (1/1: Mg e 2 )}

A

M;;/(2IR])

B = (Mg /M)y + (1 -Fluy)

¢ = (62/TAWA/M,,) + u3/(4(c2/T2)

The function oscillates and is subject to severe round-off error. When the common factors in the
numerator and denominator B and A are eliminated we have

B=-t/(1-212/T2+ e +/T?

and
2,72
(1 + e/T?)
e
where



a=(1-12/T2+ 1/2‘54/1'4 _e_‘2/—r2) <=0 '1/616/’1'6

B=(1+12/T2+ 1/214/—1-4 _enz/‘rz) =0 1/516/’1'6

Note the {irst three elements of o and B are the first three terms of the Taylor series expansion of the
2 2
exponential. Letx = - %2— foraand x = + %y-ror 8. The Taylor series expression for eX is

lx

h
!

=4

o
eX=1+x+x2/2! + =Z
h=0

a

h
SO l-ex=—zg—!
=1

2 h

X .4

1***2——°"=-Zm
h=3

if Ix! is made small ex = 1. For example if x = 0.01 then

10-4 10-6
e 00l - 1_001+ % - % + .

Many or all of the significant figures could be lost by finding e* then subtracting the first few terms.
So the program was written to find {1 -eX ) and (1 + x + x2/2 — e*} directly by the sum series for

oo

h
small 1x]. Ziﬁ,— was used for M,; where
h=1 ’

ci T, . 2,72 2,72, 12 14 — o
M), = 41'74'[(A - e 2T 4 4672/ T g - ﬁ)] 1 =0 2477(t¥/TY (12)

4.1 Limits of Integration
The function drops off exponentfally in u; and {5 so we use this property to determine the
practical limits of integration. First we integrate [Eq. (Al)] to get H. The exponential part is
exp - [u/i20/1)]?
The function drops off by €716 = 107 when p_,, = + 8%/t
As
t =, G(t)~H sow(t)= Gt)-H=-= 0
In some cases H is extremely small so it can be neglected and the behavior of only G need be considered.

For single integral physical optics (PO) we use an upper limit of 7., = 4T. At that point the difference
has dropped off by e-16s 10-7,



The full triple integral for physical optics (TI) is a very complex function in 1. Therelore the
limits cannot be determined analytically. However. we do expect a limit comparable to the PO
integration limit. We find the value of w(t} for

1=n%-forn=l.2 ...... 20

The first point where two consecutive values of w(t) drop below 1010 is taken as 1,,,, . the upper limit
of integration. Two consecutive w(t,) are checked in case one is a null caused by the function's
oscillations. Our experience showed this method produces reasonable values for 1., .

Next we find the limits in p, and 4, . The exponential part of the expression is e ¢ where

1 Mo
=M _O'T_2_)2 +p,/(26/1))2

Good limits are

Himax = % 0/1'

Wy = * 4yM; /(o/T)

Either will cause ¢ to increase by 16 which causes the [unction to drop off by e 16 = 10-7. Note that
M2 max Changes with 1 sinced M;; is a function of 1. When tis smallM,, and i, ., are small so the
function is inlegrated over a narrow range. When 1 is large the range of integration in 5 is broader.
The flexible integration range cuts down on wasted computational effort at small 1.

4.2 Integration Procedure

The next step is to pick an integration scheme. Common integration schemes are Simpson's rule
and Romberg integration which is a higher order variation on Simpson's rule. Unfortunately, the
function oscillates and the results diverge even with more than 16,000 points and days of CPU. This
occurs because Simpson's rule acts like a digital filter amplifying the large high order frequencies. Al
finer step sizes, the integrated sum will grow in size for a high-frequency function (Hamming!® , p. 39).

Another common integration scheme is Gaussian quadrature. Plots of the function in p, and
Ky show that it has about 10 to 20 cycles of oscillation in the interval of integration. So each
integrand was divided up into 20 sections and each section was solved by Gauss-Legendre quadralure
and the sections were totaled up to give the integral for that integrand.

The integration is done in a very complex iterative method. Before integrating. the abscissas and
weights are determined for Gauss-Legendre integration with 2, 4. 8, 16. 32, and 64 points. Each section
was first found by 2 point quadrature, then with 4 point, then 8 point, etc. Alter each step the sections
and their sum are compared to see if the results have converged. The sections which converge or [all
below the error threshold are marked "done". When the total of {Le sections converges we have the
solution for that integral. This is done for all three levels of integration.

10. Hamming, RW. (1977) Digital Filters, Prentice Hall, New Jersey.



In the outer two integrations (over t and p,). an error threshold is determined which is passed o
the next inner integration (over yt, and |, ). If a section or the sum falls below this threshold, the
respective portion of the inner integration is marked "done" even if it has not converged. because the
value is too small to significantly contribute to the final result. The complicated iterative method
saves computer time, but greatly increases the program complexity.

Table 1 shows the subroutine calls needed to perform the actual triple integration. The program is
ten subroutines deep. MAIN is the main program. It calls subroutine QUADT. Subroutines QUADT,
QUADM1, and QUADM2 set up the parameters for the quadrature over t.u, and i, respectively. The
QUAD subroutines call subroutines IG, IGM1, and IGM2 respectively. These subroutines do the actual
integrations of each section of the integrand over 1, j,, and p,. The IG subroutines respectively call
WCOS, R, and P, which find the functions in 1. p;. and 3. WCOS and R call the next inner-most
quadrature subroutines (QUADM1 and QUADM2). Subroutine WCOS also calls S1 and S3 which find
(1 -e9and (1 + x + x2/2 - € respectively. Subroutines R and P call F which finds F().

Table 1. Calculation of Normalized Cross Section ¢°

Geometric Optics Physical Optics Triple Integral
MTN MAlIN MAIIN
F gUlAD QUADT
1G 1G
| I
FNPO S3— WT(B— Sl
QUADMI
IGM1
I
R—-F
|
QUAIDM2
IGM2
|
P—F

8. NUMERICAL RESULTS

In this section, graphs of 0 will be presented as a function of the Rayleigh roughness parameter T
for different slope conditions, o/T. For a one dimensional rough surface, three models are used to
represent the normalized cross section, ¢°: (1) The triple integral representation (T1) given by [Eqgs. (4).
(5). A1 and A5,] (2) the single integral representation (PO) given by [Eq. (6)), valid for small slopes and
(3) the asymptotic, high frequency representation (GO), given by (Eq. (7)]. In this report, the parameters
used to generate the figures were taken to have the following values: A ranges from 0.01 m t0 0.35 m,

10



¢, = 0° and the complex dielectric constant of the surface ¢ = 4.0. The Rayleigh parameter was varied
by varying the em wave-length A. The angles of incidence and scattering are always fixed at 83.75°.
In Figure 1, the mean slope 6/T = 0.1, so that the PO single integral represcutatioa is valid. It can
be seen that the PO representation of ¢° is within 0.1 percent of the exact TI representation for all
Rayleigh parameters . The high frequency GO representation is within 0.5 percent of the TI
representation only for £ > 5. For I < 2, the GO representation is completely inaccurate.

SLOPE 0.1

1.25 -
25 T
1.00 4
.75+
GO
T
50 1+ Yo J—
GO ~-----
254
U R— | 1 1 [ 1 ! I
| A AR RS M
12 3456 7 8 9 10
z

Figure 1. Normalized Cross Section o° vs. Rayleigh Parameter £, /T = 0.1

11




3 In Figure 2, the mean slope 6/T has been increased 10 0.2. Now, there is a greater discrepancy
between the PO representation and the Tl representation, but the PO representation is still within 0.5
percent of the T{ rcpresentation for all values of Z. The GO representation §s inaccurate for I < 4,
compared to the T1 representation.

] SLOPE 0.2

1 1 2 3 4 5 6 7 8 9 10
)

Figure 2. Normalized Cross Seclion ©° vs. Rayleigh Parameter £, 6/T=0.2
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In Figure 3, the mean slope has been increased to 0.5. Here, the discrepancy between the PO
representation and the TI has increased to about 5 percent for L > 5 and is as large as 20 percent in the
vicinity of £ = 2. One can infer that the single integral PO representation is accurate only for slopes
6/T < 0.5. The GO representation is within 5 percent of the accurate Tl representation only for £ > 5.

SLOPE 0.5

.ZOT
TI
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Figure 3. Normalized Cross Section ¢° vs. Rayleigh Parameter Z, 0/T = 0.5
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In Figure 4, the mean slope has increased to 1.0. The discrepancy between the PO representation
and the TI is 20 percent for Z > 5 and is as large as 45 percent near = 3. Th':s, the single integral PO
representation is not valid or accurate for ¢/T > 0.5. Also. it should be noted that the high frequency GO
representation is not accurate for sicpes ¢/T > 0.5, regardless of the value of the Rayleigh parameter £.
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Figure 4. Normalized Cross Section ¢° vs. Rayleigh Parameter £, 6/T = 1.0
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In Figure 5, the main slope has been increased to 2.0. Here, the discrepancy between the single
integral PO model and the T1 is 100 percent for a range of £ values, so that neither the PO model nor the
GO model are accurate for most I values.
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Figure 5. Normalized Cross Section o¢° vs. Rayleigh Parameter I, 6/T = 2.0
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In Figure G, the niean slope has been [urther increased 5.0. Now, the slope is so large that neither
the PO model nor the GO model are accurate for most I values.
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Figure 6. Normalized Cross Section ¢° vs. Rayleigh Parameter X, /T = 5.0
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In Figure 7, plots are shown of A (in percent) vs /T for different Rayleigh parameter I regimes,
that is, for different frequency ranges. Here, the percent error

A= a°(TI) - a°(PO)
- 6°(PO)

ForZ<lwetookX~1/2, for1<X<4 wetook =3, andfor Z>4 wetook L=6. It may be noled that
the greatest error lies in the Rayleigh parameter regime 1 < £ < 4. Also, the error increases as the slope
o/T increases. If one calculates according to the single integral (PO) representation, one can recover
the exact TI ¢° value by multiplying the o°(PO) value by the appropriaic A value and adding it to the
(PO) value, that is

6°(TI) = a°(PO) + A[c°(PO}].

ERROR OF PO APPROXIMATION
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Figure 7. Relative Error vs. Slope for Diflerent Rayleigh Parameters
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6. DISCUSSION

In this report, it was shown that an exact representation of a physical optics model for the
normalized cross section ¢° could be derived for a one-dimensional rough surface. This exact
representation of o° was reduced to a triple integral over the separation t and the surface slopes at two
points, u, and ji,. It was demonstrated that the integral over t had a singularity, but that it was
integrable. The integrals could be performed numerically. The Romberg method of numerical
integration did not converge; a Gaussian quadrature technique had to be employed. Three models for
o°, the triple integral (T1). single integral physical optics (PO). and the geometrical optics (GO) were
studied as a function of Rayleigh parameter I for different slope (o/T) regimes. The Rayleigh
parameter was varied by varying the frequency; the angles of incidence 6, and scattering 6, are fixed at
89.75°. A graph of relative error A vs o/T for diflerent Rayleigh parameter L regimes was presented. It
can be used to recover the exact ¢® (T1) value from the single integral PO representation of ¢°, for this
set of conditions.

7. CONCLUSIONS

It was found that the PO model is accurate only for 6/T < 0.5, regardless of the Rayleigh parameter.
It was also found that taking the high {requency limit A— O is not a sulficient condition for the
validity of the GO model. From the numerical results, it was shown that the surface slopes must be
small; 6/T < 0.5. From analysis of the integral representation of ¢°, it can be shown that the
asymptotic expression (GO) for 6° may be derived if £ > 4.
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Appendix

The Relationships in the General Integral Expression for Cross Section

The purpose of this appendix is to give the details of the respective arguments by which the results
of (Eq. (4)} and (Eq. (5] can be simplified to those of [Eq. (6)] {or both sets of assumptions. The first step
is to examine the elements of the integrands in more detail.

First, the quantily H used in w(1) in [Eq. {4)] is given by the expression

2

H = (T2e“’,2_°2/(4n02)) { fexp - (u/(Zc/T))zF(u)du] (A1)

The function F(y) used in [Eq. (5)] can be reduced to the form

Fu) = (1 - R ;(y,))lusin; + cosd,) + [1 + R | (y,)] (usinb; - cosby) (A2)

where it has been assumed that there is no y variation ( ai; = 0) and the scattering takes place in the

forward direction (@, = 0°). Here, the Fresnel reflection coeflicient is given by
R | (v,) = (cosy, - V& —sin2y,)/(cosy, + Ve -sin2y,)
and
cosy; = (using, + cose,)/(m).
The trivariate distribution function P; in [Eq. (5)] is given by
Py=(21)3/2(RIFV/2 e u Ry, (A3)

u! R-lu is a positive definite quadratic form:




uT Rlu= 1/(21R1DIMy) 2+ 2My5 §(1) + Hg) + Mgy (uf + u3) + 2M5gu yual

QT = (&- Hi. l»lz)

IR is the determinant of the surface height covariance matrix

2(62 - p) -dp/at -dp/at
R= -dp/at +32p/3t2 | _ o -22%p /312 (A4)
-dp/dt -3%p/at2 +3%p /312 | _ 4

where

p = surface correlation function

p = o%xp(-12/T?)

It should be noted that the expression for R given by Hagfors® has errors in the signs of several
elements. i

M,; is the co-factor of the covariance matrix R;;. The triple integral in [Eq. (5)] may be reduced to
a double integral when t # 0 by using the known expression for the cosine transform of a Gaussian
function

oo

jdécosvz EP4=1/(2ryM,])e"C cos(v,B) expl-vZ/4A) (AS)
0O
where
A =M, /(21R])
B = (Mo/M)uy + 1yl
C=(1/2IR1) [(M22 - ML /Mt pd) - 20My, - M"{2/M”)u,u2]

At this point we turn to the {wo cases that are derived under different assumptions.
First, consider the small slope case, 6/T<<1. In this case, the covariance matrix R becomes

2(c2 - p) 0 0
R = 0 0 0 (A6)
0 0] 0

so that the heights and slopes are decorrelated. Then the integralions over u; am y, in [Eq. (5)] may be
approximated by setling uppu, = 4, = constant =tany = Hsp where tan vy is the slope of a facet which
will produce a reflected wave in the specular direction:
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tany = | sin®, - sing, | /(cos, + cos0,)(A7)

[Eq. (4)] for o° now reduces o a single integration fonn as shown in {Eq. (6)]. It should be noted that
since the slopes are assumed to be small (6/T << 1), then y = tan y so that y = 0. whicti imiplies the
specular condition 6, = 6,.

The argument for reducing the integrals in [Eq. (5)] o the result in [Eq. (6)} is somewhat different
for the high frequency case. In the GO limit the intcgrals over p, and p, may be approximated by
removing F(u,) and F{u1,) from the integrals and setting them equal to constants; the justification for
this is the stationary phase (or specular point) argument. This argument states that lor large k in the
exponential (or cosine) factor. the only surface regions which contribute to the integral are those
smoothly curving portions in a position to specularly reflect into the desired scattering dircction.
Then, u) = 4y =tany =y, and [Egs. (4) and (5)] reduce to [Eq (6)] (see Barrick and Peake (3)).
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